NAMIBIA UNIVERSITY ## OF SCIENCE AND TECHNOLOGY ## **FACULTY OF COMPUTING AND INFORMATICS** DEPARTMENT OF COMPUTER SCIENCE | QUALIFICATION: BACHELOR OF COMPUTER SCIENCE | | | |---|----------------------|--| | QUALIFICATION CODE: 07BACS | LEVEL: 7 | | | COURSE: ARTIFICIAL INTELLIGENCE | COURSE CODE: ARI711S | | | DATE: JUNE 2022 | PAPER: THEORY | | | DURATION: 3 HOURS | MARKS: 93 | | | FIRST OPPORTUNITY EXAMINATION QUESTION PAPER | | | | | |--|---------------------|--|--|--| | EXAMINER(S) | Prof. JOSE QUENUM | | | | | MODERATOR: | Mr STANTIN SIEBRITZ | | | | | | | | | | | INSTRUCTIONS | | | | | |--------------|--|--|--|--| | 1. | Answer ALL the questions. | | | | | 2. | Read all the questions carefully before answering. | | | | | 3. | Number the answers clearly | | | | ## THIS QUESTION PAPER CONSISTS OF 3 PAGES (Excluding this front page) PERMISSIBLE MATERIALS **CALCULATOR** [15] [10] (a) Consider the blocks world. The blocks can be on a table or in a box. Consider three generic actions: a_0 , a_1 , and a_2 described as follows: a₀: when applied to a block, will keep it in the box; a₁: when applied to a block, will move it on the table; a₂: when applied to two blocks, will move the first one on top of the second one. Consider the following four states in the system: S_0 : all blocks are in the box, no block is on the table; S₁: only block B is on the table; all other blocks are in the box; S₂: both blocks B and C are on the table, with C on top of B; S₃: blocks B, C and D are on the table, with D on top of C and C on top of B. Furthermore, additional information is provided in Table 1, where each state has a reward, possible actions and a transition model for each action. Note that for a given action, the probability values indicated in its transition model all sum up to 1. Table 1: Additional information | State | Reward | Action | Transition Model | |----------------|----------------|-----------------|--| | S ₀ | r ₀ | a _{0b} | $(1, S_0)$ | | | | a _{1b} | $(p_0, S_0); (p_1, S_1)$ | | S ₁ | r ₁ | a _{0c} | $(1, S_1)$ | | | | a_{1c} | $(p_0^1, S_1); (p_1^1, S_4); (p_2^1, S_2)$ | | | | a _{2c} | $(p_0^2, S_1); (p_1^2, S_2);$ | | S ₂ | r ₂ | a _{0d} | $(1, S_2)$ | | | | a_{1d} | $(p_0^3, S_2); (p_1^3, S_5); (p_2^3, S_3)$ | | | | a_{2d} | $(p_0^4, S_2); (p_1^4, S_3);$ | | S ₃ | 100 | - | <u>-</u> | Assuming we model this problem as Markov Decision Process (\mathcal{MDP}) and consider a discount value σ , provide the utility of each of the states S_0 , S_1 and S_2 for the first three iterations using the value iteration algorithm. Note that although the states S_4 and S_5 have not been defined, they should be assumed in the system. (b) Consider the following policy, $\pi_0 = \{S_0 \mapsto a_{0b}, S_1 \mapsto a_{1c}, S_2 \mapsto a_{2d}\}$. Is π_0 optimal? Explain. Question 2[15 points] The diagram in Figure 1 represents the extensive form of a sequential game - 1. Provide the strategic form associated with the game; - Does any player have a dominant strategy? - 3. Is there a dominant strategy equilibrium? [6] [7] Figure 1: Sequential Game 4. What are the Nash equilibria? $$\begin{array}{cccc} & \imath_1 & \jmath_1 & \ell_1 \\ & \imath_0 & (7,2) & (2,5) & (6,3) \end{array}$$ Player1 $$j_0$$ (2,2) (6,5) (4,8) ℓ_0 (3,1) (2,7) (4,9) Is there a dominated strategy for Player 2? If yes eliminate it; (b) The resulting game is now called \mathcal{G}' . Is ℓ_0 a worse strategy for Player 1 than playing a mixed strategy of i_0 and j_0 in \mathcal{G}' ? (c) what is the payoff of each player when they play a mixed strategy with Player 1 eliminating ℓ_0 in \mathcal{G}' ? Question 4[20 points] Consider the blocks world. Here we have seven (7) blocks: A, B, C, D, E, F and G. There is also a table with a capacity of three (3) blocks (i.e., three distinct blocks can lay on the table at any point in time simultaneously). It is assumed that a block can either be inside the box or outside. When outside the box, a block can either be on the table or on top of another block. We have the following predicates: $ontable(\mathbf{x})$: the block x is on the table; on(x, y): the block x lays on top of the block y; clear(x): the block x is clear, i.e., there is nothing on top of it; inbox(x): the block x is inside the box. Moreover, the following actions are introduced: pick(x): which picks a block from the box and drops it on the table; drop(x,y): which drops the block on either the table or another block. Consider a partial plan Q containing two actions: a_0 and a_i , with $a_0 \prec a_i$. The action a_0 has the following effect: ``` ontable(B); ontable(C); ontable(E); clear(B); clear(C); clear(E); inbox(D); inbox(F); inbox(G); inbox(G) ``` The action a_i leads to a goal state and has the following pre conditions: ``` ontable(F); ontable(A); clear(Table); on(B, A); on(C, B); on(D, C); on(E, F); ``` Modify Q to generate a complete and correct plan. Page 3 of 3 End of Exam