

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF COMPUTING AND INFORMATICS

DEPARTMENT OF COMPUTER SCIENCE

QUALIFICATION: BACHELOR OF COMPUTER SCIENCE		
QUALIFICATION CODE: 07BACS	LEVEL: 7	
COURSE: ARTIFICIAL INTELLIGENCE	COURSE CODE: ARI711S	
DATE: JUNE 2022	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 93	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER(S)	Prof. JOSE QUENUM			
MODERATOR:	Mr STANTIN SIEBRITZ			

INSTRUCTIONS				
1.	Answer ALL the questions.			
2.	Read all the questions carefully before answering.			
3.	Number the answers clearly			

THIS QUESTION PAPER CONSISTS OF 3 PAGES

(Excluding this front page)

PERMISSIBLE MATERIALS

CALCULATOR

[15]

[10]

(a) Consider the blocks world. The blocks can be on a table or in a box. Consider three generic actions: a_0 , a_1 , and a_2 described as follows:

a₀: when applied to a block, will keep it in the box;

a₁: when applied to a block, will move it on the table;

a₂: when applied to two blocks, will move the first one on top of the second one.

Consider the following four states in the system:

 S_0 : all blocks are in the box, no block is on the table;

S₁: only block B is on the table; all other blocks are in the box;

S₂: both blocks B and C are on the table, with C on top of B;

S₃: blocks B, C and D are on the table, with D on top of C and C on top of B.

Furthermore, additional information is provided in Table 1, where each state has a reward, possible actions and a transition model for each action. Note that for a given action, the probability values indicated in its transition model all sum up to 1.

Table 1: Additional information

State	Reward	Action	Transition Model
S ₀	r ₀	a _{0b}	$(1, S_0)$
		a _{1b}	$(p_0, S_0); (p_1, S_1)$
S ₁	r ₁	a _{0c}	$(1, S_1)$
		a_{1c}	$(p_0^1, S_1); (p_1^1, S_4); (p_2^1, S_2)$
		a _{2c}	$(p_0^2, S_1); (p_1^2, S_2);$
S ₂	r ₂	a _{0d}	$(1, S_2)$
		a_{1d}	$(p_0^3, S_2); (p_1^3, S_5); (p_2^3, S_3)$
		a_{2d}	$(p_0^4, S_2); (p_1^4, S_3);$
S ₃	100	-	<u>-</u>

Assuming we model this problem as Markov Decision Process (\mathcal{MDP}) and consider a discount value σ , provide the utility of each of the states S_0 , S_1 and S_2 for the first three iterations using the value iteration algorithm. Note that although the states S_4 and S_5 have not been defined, they should be assumed in the system.

(b) Consider the following policy, $\pi_0 = \{S_0 \mapsto a_{0b}, S_1 \mapsto a_{1c}, S_2 \mapsto a_{2d}\}$. Is π_0 optimal? Explain.

Question 2[15 points]

The diagram in Figure 1 represents the extensive form of a sequential game

- 1. Provide the strategic form associated with the game;
- Does any player have a dominant strategy?
- 3. Is there a dominant strategy equilibrium?

[6]

[7]

Figure 1: Sequential Game

4. What are the Nash equilibria?

$$\begin{array}{cccc} & \imath_1 & \jmath_1 & \ell_1 \\ & \imath_0 & (7,2) & (2,5) & (6,3) \end{array}$$
 Player1

$$j_0$$
 (2,2) (6,5) (4,8)

 ℓ_0 (3,1) (2,7) (4,9)

Is there a dominated strategy for Player 2? If yes eliminate it; (b) The resulting game is now called \mathcal{G}' . Is ℓ_0 a worse strategy for Player 1 than playing a

mixed strategy of i_0 and j_0 in \mathcal{G}' ?

(c) what is the payoff of each player when they play a mixed strategy with Player 1 eliminating ℓ_0 in \mathcal{G}' ?

Question 4[20 points]

Consider the blocks world. Here we have seven (7) blocks: A, B, C, D, E, F and G. There is also a table with a capacity of three (3) blocks (i.e., three distinct blocks can lay on the table at any point in time simultaneously). It is assumed that a block can either be inside the box or outside. When outside the box, a block can either be on the table or on top of another block.

We have the following predicates:

 $ontable(\mathbf{x})$: the block x is on the table;

.

on(x, y): the block x lays on top of the block y;

clear(x): the block x is clear, i.e., there is nothing on top of it;

inbox(x): the block x is inside the box.

Moreover, the following actions are introduced:

pick(x): which picks a block from the box and drops it on the table;

drop(x,y): which drops the block on either the table or another block.

Consider a partial plan Q containing two actions: a_0 and a_i , with $a_0 \prec a_i$. The action a_0 has the following effect:

```
ontable(B); ontable(C); ontable(E); clear(B); clear(C); clear(E); inbox(D); inbox(F); inbox(G); inbox(G)
```

The action a_i leads to a goal state and has the following pre conditions:

```
ontable(F); ontable(A); clear(Table); on(B, A); on(C, B); on(D, C); on(E, F);
```

Modify Q to generate a complete and correct plan.

Page 3 of 3 End of Exam